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Data-driven simulation and characterisation of gold
nanoparticle melting
Claudio Zeni 1,5✉, Kevin Rossi1,6, Theodore Pavloudis2,7, Joseph Kioseoglou 3, Stefano de Gironcoli4,

Richard E. Palmer 2 & Francesca Baletto 1,8

The simulation and analysis of the thermal stability of nanoparticles, a stepping stone

towards their application in technological devices, require fast and accurate force fields, in

conjunction with effective characterisation methods. In this work, we develop efficient,

transferable, and interpretable machine learning force fields for gold nanoparticles based on

data gathered from Density Functional Theory calculations. We use them to investigate the

thermodynamic stability of gold nanoparticles of different sizes (1 to 6 nm), containing up to

6266 atoms, concerning a solid-liquid phase change through molecular dynamics simula-

tions. We predict nanoparticle melting temperatures in good agreement with available

experimental data. Furthermore, we characterize the solid-liquid phase change mechanism

employing an unsupervised learning scheme to categorize local atomic environments. We

thus provide a data-driven definition of liquid atomic arrangements in the inner and surface

regions of a nanoparticle and employ it to show that melting initiates at the outer layers.
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Gold (Au) nanoparticles (NPs) find widespread application
in many technological areas, such as in optics1,2,
nanomedicine3,4 and catalysis5–9. As all chemo-physical

properties of Au NPs depend on their shape, the analysis of their
structural stability has attracted a lot of attention in the past years.
A deep understanding of the liquid–solid phase change
mechanisms of Au NP, also accounting for surface rearrange-
ments, may, in particular, be crucial for catalytic applications,
where the reaction conditions often demand the nanocatalysts to
work at high temperatures while preserving their size and shape.

Numerical simulations can, in principle, offer a platform to
investigate and characterize phase change mechanisms of NPs at
an atomistic level. However, two long-standing challenges must
be overcome to improve the numerical predictions of NPs’
thermal stability. The first concerns the difficulty of defining an
unbiased characterization of the phase change mechanism.
Indeed, the identification of order parameters to characterize
solid–liquid phase changes at the nanoscale is an active topic of
debate with a long tradition10–13. Widely used methods often rely
on chemical-intuition and heuristic approaches, and can there-
fore lead to descriptive order parameters, which are neither fully
general nor robust to parameter tuning. For example, changes in
the first neighbour distance distribution affect the definition of
coordination number too drastically14,15, and little research has
been carried out on the characterization of local atomic envir-
onments peculiar of NP’s surface atoms.

The second challenge is related to the development of accurate
and fast interparticle potentials, which reproduce the complexity
of the NPs’ energy landscape. In so far, atomistic modelling
methods have offered a strict trade-off between computational
speed and accuracy. While simulations based on electronic
structure methods, such as density functional theory (DFT),
provide quantitative accuracy, their computational cost severely
limits the capabilities to generate dynamical trajectories of large
systems and for long times. On the contrary, large systems and
long simulation timescales are easily accessible when employing
semi-empirical potentials. Nevertheless, such methods do not
necessarily provide a quantitative insight on the chemistry of
NPs’ phase changes16 because their analytical functional form
limits their predictive power and flexibility. Furthermore, these
potentials are often fitted to bulk properties, which poses an
additional limit to their accuracy when simulating nanoscale
systems17.

In this work, we tackle these two challenges by adopting data-
driven methods to generate an accurate and efficient description
of interatomic potentials, and by developing an automated rou-
tine that classifies the atomic environments observed during Au
NPs’ phase change. To obtain long, i.e., hundreds of nanoseconds,
and accurate trajectories during melting of Au NPs of variable
sizes, we develop a set of machine-learning force fields (ML-
FFs)18–25 using the innovative framework of mapped Gaussian
processes26–28. ML-FFs can approximate the force-energy pre-
dictions yielded by the reference DFT method they are trained
upon while being many orders of magnitude faster to compute.
Here, we train ML-FFs on local-density approximation (LDA)-
DFT data and revised Perdew-Burke-Ernzerhof (rPBE)-DFT data,
and contrast our results with experimental results and with pre-
dictions found using a semi-empirical interatomic potential. To
characterize the melting kinetics, we adopt an unsupervised ML
clustering scheme that discriminates in an automatic fashion
locally liquid from locally solid environments, surface from inner
environments and high-coordination from low-coordination
surface environments. We then obtain a route to estimate the
NPs melting temperature by monitoring the relative population
of liquid atoms in the NP and the melting mechanism by
recording the spatial distribution of locally liquid environments

as a function of temperature. We employ these data-driven tools
to study the melting of Au NPs with diameters between 1 and
6 nm, and various initial geometrical shapes. We univocally show
that melting initiates in the outermost layer of Au NPs first, and
occurs in the NPs’ core second.

Results
Machine-learning force fields. To construct a training database,
we extract seven random de-correlated frames from ab initio
molecular dynamics trajectories where an Au NP containing 309
atoms (~2 nm of diameter) with an initial face-centred cubic
(FCC) morphology undergoes melting. We calculate, for each
frame, forces and energies at DFT LDA and DFT generalized
gradient approximation (GGA)-rPBE levels, and utilize a 2+ 3-
body mappable Gaussian process regression (GPR) framework26,27

to fit two ML-FFs, one for each DFT method; further detail is
provided in the ‘Methods’ and in the Supplementary Methods.
When training on 2100 local atomic environments, our ML-FFs
incur in a mean absolute error (MAE) on the force components of
0.09 ± 0.04 eV/Å (LDA ML-FF) and 0.07 ± 0.03 eV/Å (rPBE ML-
FF), and in an MAE on the atomic energy differences of
2.65 ± 2.02meV/atom (LDA ML-FF) and 1.98 ± 1.76meV/atom
(rPBE ML-FF), on validation sets disjointed from the training sets.
The reported accuracy is comparable to the ones quoted in pre-
vious studies29–35 and is deemed satisfactory. This training dataset,
albeit small, contains a heterogeneous set of local atomic envir-
onments, as shown in Supplementary Fig. 1, and we, therefore,
consider it to be representative for Au NPs in the size range of
interest.

We test the accuracy of the two ML-FFs on a more complex
dataset, which encompasses NPs’ architectures of different sizes
and shapes (see Supplementary Methods). Supplementary Table 1
reports the MAEs on force components and atomic energies
incurred by each of the ML-FFs developed on these validation
datasets. The MAEs on force components are again consistently
around 0.1 eV/Å, and the MAEs on atomic energy differences are
consistently lower than 10 meV/atom. The ML-FFs are, therefore,
considered accurate enough and, more importantly, transferable
across different NPs’ sizes and shapes. This holds regardless of the
DFT level of theory used to train the ML-FF (GGA PBE and
LDA) and its implementation (Vienna Ab initio Simulation
Package (VASP) projector-augmented wave and CP2K Gaussian
plane wave).

When validating the ML-FFs against the experimental bulk
cohesive energy (Supplementary Fig. 4), we observe that LDA
(rPBE)-based ML-FF overestimates (underestimates) this quan-
tity. We then adopt a parametric mixing of the two ML-FFs (see
also the ‘Methods’ section) and generate a third ML-FF, labelled
hybrid, which, by construction, has cohesive energy in the bulk
phase that matches the experimental one. The 2- and 3-body FFs
forming the three ML-FFs present some noticeable differences; in
Supplementary Figure 5, we show how the LDA ML-FF is more
bound and stiffer than the rPBE ML-FF, and how the hybrid ML-
FF has, as expected, a shape that is in-between one of the other
two ML-FFs.

Phase change characterization. Following the successful training
and validation of our ML-FFs, we employ them to study the size-
dependent melting temperature of Au NPs. We consider NPs
whose diameter ranges from 1 to 6 nm, corresponding to NPs
containing 147, 309, 561, 923, 2869, and 6266 atoms. We sample
the NPs’ evolution in a temperature range between 400 and
1600 K when subject to a heating rate of 20 K/ns. We also test 5
and 10 K/ns heating rates and do not observe significant changes
in the melting temperature estimate (see Supplementary Fig. 6).
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For each NP size and ML-FF, we simulate Au NPs for a total of
2.4 ms, a time length not accessible to electronic structure cal-
culations, even for the largest state-of-the-art computational
facilities. We refer the interested reader to the ‘Methods’ section
for further details on the numerical set-up used to perform the
simulations.

To characterize the solid–liquid phase transition, while
distinguishing between surface and inner melting, we adopt an
unsupervised ML approach that hinges on a small database of
configurations randomly extracted from the phase change
trajectories we simulated and a local atomic density representa-
tion. In particular, we employ a modified version36 of the 3-body
local atomic cluster expansion descriptor37 to associate a 40-
dimensional set of features to each atom. We then exploit a
hierarchical k-means clustering scheme to isolate six classes of
local atomic environments (see also the ‘Methods’ and Supple-
mentary Methods). This clustering scheme labels the local atomic
environments as being in the solid or liquid phase, and as
belonging to the inner, high-coordination surface and low-
coordination surface motifs. As illustrated in panels b and c of
Fig. 1 and Supplementary Figs. 6 and 13, both the number of
nearest neighbours (#NNs) within a predefined cut-off and the
nominal MD simulation temperature at which these are sampled
correlate with the labels assigned by the clustering algorithm.

The six local atomic environment classes are showcased in
Fig. 1 and Supplementary Figs. 8 and 9 can be characterized from
the number of neighbours within a given cut-off (here taken as

3.50Å for the LDA ML-FF, 3.75Å for the rPBE ML-FF and
3.60Å for the hybrid ML-FF) they display, and from features in
their pair-distance distribution function (PDF). In detail:

● Solid inner (SI) atoms have 12 NNs within the chosen cut-
off, and their PDF displays a well-defined peak at a second
NN distance consistent with the one of bulk FCC Au. SI local
atomic environments comprise FCC-like motifs, as well as
motifs with 5-fold symmetry or icosahedral symmetry.

● Liquid inner (LI) atoms have, on average, 11 NNs. The
PDF for this class of local atomic environment presents the
first peak at distances lower than the one for bulk lattice
and lacks a pronounced second peak in correspondence to
the bulk lattice one.

● Solid high-coordination surface (SHS) atoms present, on
average, eight NNs, and peaks its PDF in correspondence to
the second NNs (lattice bulk).

● Liquid high-coordination surface (LHS) atoms also have
eight NNs on average, yet the PDF lacks a peak at the bulk
lattice.

● Solid low-coordination surface (SLS) atoms find an average
of 6.9 atoms at a distance consistent with the bulk NN
distance.

● Liquid low-coordination surface (LLS) atoms have, on
average, 6.0 atoms at a distance lower than the bulk NN
distance; furthermore, the PDF does not display any peak
for the second NNs.

Fig. 1 Features of the six classes of local atoms environments identified through clustering. Visualization of the hierarchical k-means clustering results
for MD simulations of Au nanoparticles with 147, 309, 561, 923, 2869, and 6266 atoms, carried out using the ML-FF trained on rPBE-DFT data. a First and
second component (x- and y-axis) of the t-sne projection of the atomic expansion coefficients of 104 local atomic environments randomly sampled from
melting MD simulations. The colours label the six classes assigned by the hierarchical k-means clustering algorithm, as defined in the main text. The
normalized average pair-distance distribution function (PDF) belonging to each class is shown and coloured accordingly. b, c Same t-sne projection as in
(a). In (b), the colours indicate the nominal simulation temperature at which the local atomic environment was taken from; in (c), the number of nearest
neighbours (#NNs) was computed using a cut-off of 3.6Å.
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This unsupervised approach enables an original and data-
driven definition of liquid atomic arrangements in the inner part
of the NPs and at the surface. Local atomic environments in a
liquid phase are all characterized by the absence of a peak of their
PDF in correspondence to their bulk lattice distance (i.e. the one
predicted by the reference interatomic potential). This observa-
tion holds regardless of whether they lie in the inner part or at the
surface of the NP, and their coordination. Furthermore, this
result confirms and rationalizes the universal signature of melting
for the whole NP we recently proposed13.

Having discriminated in automated fashion atoms in liquid
and solid environments, also as a function of their spatial location
in the NP, we draw novel definitions to determine melting phase
changes in the NP. To this end, we monitor the time evolution of
the occurrence of liquid environments, their rate of variation and
at which temperature their relative population increases above the
0.4 of the total, also as a function of their distance from the centre
of mass (COM) of the NP. In the following, we refer to the
melting temperature of the NP (TNP

melt) as the temperature at
which the number of inner atoms that are identified as liquid
(#LI) by the clustering algorithm displays the maximum positive
derivative. This melting temperature estimation method yields
equivalent results w.r.t. other well-established algorithms to
calculate the melting temperature, such as the caloric curve
maximum derivative and the heat capacity peak (see Supplemen-
tary Fig. 13). This observation further corroborates our trust in
the clustering algorithm as a tool to characterize Au NPs melting.

Size-dependent melting. Figure 2 reports the TNP
melt for NPs of

different sizes as a function of the NPs’ reciprocal radius, as found
during MD simulations carried out with the LDA, rPBE and
hybrid ML-FFs. The reported TNP

melt is averaged over the four (two
for NPs with more than 2500 atoms) independent MD simula-
tions carried out for each NP and each ML-FF. For an immediate
comparison, we report the experimental melting temperature of

bulk FCC Au at atmospheric pressure (Tbulk
melt), and the

experimental melting temperatures of Au NPs as a function of the
NP size38,39. For reference, we add the TNP

melt estimates obtained
using a classical MD where the interatomic interaction is derived
in the second-moment approximation of the tight-binding (TB-
SMA)13. All the ML-FFs lead to TNP

melt predictions, which are (as
expected) lower than the ones found during experiments for
C-supported Au NPs (pink squares in Fig. 2). On average, the
rPBE-derived ML-FF predicts TNP

melt 250 ± 50 K lower than the
ones predicted by the LDA-derived ML-FF, and 180 ± 40 K lower
than the ones predicted by the hybrid ML-FF. Interestingly, the
TNP
melt predicted by the hybrid ML-FF are <50 K away from the

melting temperatures found experimentally via differential scan-
ning calorimetry measurements39.

Melting mechanism characterization. In the previous section,
we established the quantitative agreement between the ML-FFs’
predictions and the experimental melting temperatures of Au
NPs, also as a function of their size. It is then natural to proceed
further and analyse the mechanism by which phase
changes occur.

To this end, we display in Fig. 3 example snapshots of an Au
6266 NP at different temperatures (panel a), and the temperature-
dependent radial distribution of the fraction of LI (#LI/#tot, panel
b) and of LS (#LS/#tot, panel c) local atomic environments. The #
symbol indicates the number of atoms belonging to a certain
class, where we define: #LS= #LHS+ #LLS, and #tot= #LHS+
#LLS+ #LI+ #SHS+ #SLS+ #SI. The results we report are
found by averaging over the set of independent MD melting
simulations employing the rPBE-based ML-FF. We refer the
interested reader to Supplementary Figs. 14 and 15 for the same
plots for all systems with 147, 309, 561, 923, 2869 and 6266 atoms
and using the three ML-FFs.

In Fig. 3 and Supplementary Figs. 14 and 15, the large majority
of the local atomic environments are correctly labelled as solid
(liquid) at the start (end) of each MD simulation. The average
occurrence of all LI atoms increases with temperature, reaching
around 0.5 at the TNP

melt independently of their distance from the
NPs’ COM. Areas located few ångstrom below the NPs’ surface
instead display significant abundances of LI atoms also at
temperatures below TNP

melt. Such observation is in line with
experimental results by Foster et al.38, where a surface melting
(Tsurf :

melt ) temperature below the TNP
melt was observed for Au NPs of

sizes comparable to the ones we analyse. This Tsurf :
melt was

determined in Foster et al.38 by taking the average between the
onset temperature for shape changes visible via aberration-
corrected scanning transmission electron microscope and the
highest temperature for which these did not occur.

To compare our results with available experimental data, we
would like to introduce a numerical definition of Tsurf :

melt . In
analogy to the TNP

melt definition, T
surf :
melt should be defined as the

temperature at which a clear discontinuity appears in the
temperature-dependent evolution of the abundances of liquid-
like atoms at the surface of the NP. This is, however, not
advisable. While the number of LI atoms has a clear and distinct
positive jump—which allows us to define a TNP

melt (Supplementary
Fig. 12)—the temperature-dependent evolution of the number of
LS does not show such a clear first-order transition (Supplemen-
tary Fig. 17). The relative amount of LS atoms increases gradually
with temperature for all NP sizes and all ML-FFs, and reaches
values around 0.5 (white line in panel (c) of Fig. 3 and
Supplementary Figs. 14 and 15) for atoms in the surface layer
at temperatures approaching TNP

melt.
We, thus, abandon the search for an unbiased definition of

Tsurf :
melt and introduce the quantity Tsurf :

thresh, which provides an

Fig. 2 Melting temperatures of Au NPs of different sizes. Average TNP
melt as

a function of NP’s reciprocal radius computed for MD simulations
employing the LDA-trained (blue triangles), rPBE-trained (orange triangles)
and hybrid (green triangles) ML-FFs. Experimental data for size-selected Au
NPs supported on carbon (pink squares) and spherical Au NPs (purple
diamonds) are taken from Foster et al.38 and Duan et al.39, respectively.
Grey pentagons refer to the TNP

melt estimates from TB-SMA iterative MD
melting simulations from Delgado-Callico et al.13. Error bars indicate the
standard deviation of the melting temperature estimations, and of the NP
sizes for experimental data taken from Foster et al.38 (pink squares).
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indication of the temperature at which significant surface
rearrangement occurs. The latter is defined as the lowest
temperature where at least 0.4 of the local atomic environments
in the surface of the NP are classified as liquid (see the ‘Methods’
section for additional details). Figure 4 reports the values of
Tsurf :
thresh and the TNP

melt for all our MD simulations, and the

experimental Tsurf :
melt as reported in Foster et al.38. The temperature

ranges comprised between Tsurf :
thresh and TNP

melt are in line with the
experimentally reported Tsurf :

melt , this is especially true for the case
of the hybrid ML-FF.

To deepen our understanding of the melting mechanism, we
also calculate the mean first-passage temperature (MFPT)
required to observe the transition to a liquid phase of 0.4 of the
atoms that initially resided at an NP edge, on a (100) surface, on a
(111) surface or in a bulk environment. These families of atoms
are discriminated against according to their number of first NNs
at the beginning of the MD simulations. Edge atoms (#NN= 6)
are more likely to move into a liquid phase than atoms on a (100)
facet (#NN= 8), which in turn are more prone to end into a
liquid phase than the atoms on a (111) facet (#NN= 9). The
inner atoms (#NN= 12) present the overall largest MFPT. This
finding is coherent with the melting initiating from the outer
layers of the NP (additional details are available in the ‘Methods’
and in the Supplementary Methods).

The trends observed during the melting characterization
indicate that local phase changes in the outermost layer of an

NP start to occur at temperatures a few hundred kelvin below the
TNP
melt. For Au NPs, the proposed characterization protocol

establishes that local solid-to-liquid changes first initiate at low-
coordinated atoms at the vertices and edges, then propagate to
atoms on (100) and (111) facets, and finally proceed to the inner
region of the NP.

Discussion
We characterize the melting mechanism in gold NPs of size
1–6 nm, and predict the melting temperatures in good agreement
with experimental data using molecular dynamics. These simu-
lations employ ML-FFs, under the mapped Gaussian process
framework, to surpass the trade-off between accuracy and cost in
traditional atomistic modelling methods. We showcase that
accurate, efficient and size-transferable FFs can be trained using
small training datasets. We additionally generate a hybrid 2+ 3-
body FF by linearly combining two ML-FFs fitted on data com-
puted using different DFT functionals; this FF is parametrized to
reproduce the bulk cohesive energy and yields predictions of
melting temperatures of Au NPs in striking agreement with
available experimental data.

To elucidate the melting mechanism, we subsequently develop
a general unsupervised clustering approach to differentiate
between inner and surface layers and to characterize the phase
change at the atomistic level. Owing to the insight offered by the
proposed clustering algorithm, we demonstrate that the melting

Fig. 3 Distribution of liquid environments in an Au 6266 NP. a Snapshots of Au 6266 simulated using the rPBE ML-FF at different nominal simulation
temperatures, with atoms coloured according to the clustering algorithm, and using the same colour scheme as in Fig. 1. b, c Average fraction of #LI (b) and
#LS (c) local atomic environments as a function of the radial distance from the COM (y-coordinate), and of the nominal system temperature (x-coordinate).
The bold coloured lines in (b, c) indicate the isosurfaces in the plot, from 0 to 1 every 0.1, while the black dashed line indicates the TNP

melt of 1065 K.
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transition initiates at the outer layer, and later spreads to the
inner region. The increase in locally liquid environments in the
outer region of the NP before the melting of its core finds a
parallel with what is generally referred to in the literature as
surface melting. The predicted trend is in very good agreement
with our experimental observations, where melting was found to
start at the outermost layer, at a temperature few hundred kelvin
lower than the NP melting. We verify that such a melting
mechanism occurs regardless of the FF used to model interatomic
interactions, but we also find that different FFs predict
different surface and NP melting temperatures. We expect that
the data-driven simulation and characterization methods
developed here, and the insight we obtain, will stimulate and
benefit other research aimed at addressing the complexity of
phase changes (solid-to-liquid and liquid-to-solid alike) at the
nanoscale.

Methods
Database construction. To construct the training set, we randomly sample seven
frames from a set of 60 frames extracted at regular time intervals from an ab initio
MD trajectory where an Au NP containing 309 atoms (~2 nm in diameter) with an
initial FCC morphology undergoes melting from 300 to 1200 K. Atomic forces and
energy associated with each configuration are calculated within the DFT frame-
work and by employing LDA and GGA-rPBE pseudopotentials to generate the
training sets for the LDA and rPBE ML-FFs, respectively. The training sets we
employ, therefore, contain 2163 local atomic environments and associated forces,
and seven total energy values, one for each structure. When assessing learning
curves (Supplementary Fig. 2) we find, in agreement with previous reports26,27, that
the MAE on force prediction converges for training databases, which encompass a
few hundreds of local atomic environments, and energy predictions do so when
energies of a handful of configurations are utilized. We furthermore note (Sup-
plementary Fig. 3) that the shape of the 2-body part of the ML-FFs resulting from
training encompassing a few hundreds of local atomic environments remains, in
essence, unchanged when the number of training points is increased.

We generate a validation set by extracting de-correlated frames from MD
trajectories previously reported in Delgado-Callico et al.13, and from ab initio MD
trajectories previously reported in Foster et al.38. We sample the melting MD
trajectories reported in Delgado-Callico et al.13, carried out using a second-
moment TB potential, from 400 up to 1200 K, and increasing iteratively the
temperature of 25 K every 5 ns. For this set-up, we consider NPs containing 146,
147, 192 and 201 atoms, which present initial different closed-shell geometries,
namely, octahedron (146 atoms), icosahedron (147 atoms), Marks decahedron (192
atoms), and regular-truncated octahedron (201 atoms). The NPs undergo both
solid–solid and solid–liquid rearrangements during these MD trajectories (for
more details see also the original reference13). The melting MD trajectories
reported in Foster et al.38 are carried out via NVT simulations, as in the VASP suit,
performed at temperatures from 300 to 1200 K with a 150 K interval using LDA-
DFT, and for Au NPs containing 147, 309 and 561 atoms starting from a
cuboctahedron.

ML-FF construction. We construct the ML-FFs for Au by applying the framework
of mappable few-body FFs trained via GPR26,27 using the FLARE Python
Package25,28. GPR FFs hinge on the nearsightedness principle of quantum
mechanics to predict total energies for a system of atoms S as a sum of local atomic
energy contributions εi(ρi):

EðSÞ ¼ ∑
i2S

εiðρiÞ; ð1Þ

where the local atomic energy is predicted as:

εiðρiÞ ¼ ∑
n
kðρi; ρnÞαn: ð2Þ

In Eq. (2), k(ρi, ρn) is the kernel (or similarity) function computed between two
local atomic environments, the weights α are analytically calculated during the
training process and n is the index that runs from 0 to the number of training data
points employed. We employ 2- and 3-body kernels for local atomic environments,
which compare local atomic environments ρi based on their distances of pairs and
triplets of atoms, respectively26,27,40. A local atomic environment ρi is defined as
the collection of relative positions rij= rj− ri of all atoms j contained within a
sphere of radius rcut centred on atom i. While traditional GPR FFs are faster to
compute than the electronic structure methods they are trained on, they are still
orders of magnitude slower than traditional parametrized FFs. The GPR FFs are
therefore transformed into tabulated FFs, which retain the accuracy of the original
GPR FFs while being extremely fast to compute, on par with other classical FFs.
The ability to map the GPR FFs follows from the explicit 2- and 3-body nature of
the representations we adopt, and takes place via spline interpolation, following the
procedure introduced by Glielmo et al.26 and first applied to MD simulations in
Zeni et al.27. The hyper-parameters used to train the ML-FFs are, following the
notation employed in Vandermause et al.28, σs,2= 0.02, l2= 0.4, σs,3= 7.0, l2= 8.6,
σn= 0.12, rcut,2= 8.0Å and rcut,3= 4.5Å.

Hybrid ML-FFs. We generate a third ML-FF, named hybrid, by linearly combining
the 2- and 3-body FFs of the ML-FFs derived from LDA and rPBE. This is done
through a parameter β that weights the two ML-FFs so that the energy εhybrid for a
local atomic environment, ρ, is:

εhybridðρÞ ¼ βεLDAðρÞ þ ð1� βÞεrPBEðρÞ: ð3Þ
The parameter β is tuned to match the experimental cohesive energy of bulk Au
(3.81 eV/atom) and is set to 0.61 for our ML-FF. The resulting hybrid ML-FF is a
2+ 3-body FF, and it has cohesive energy and equilibrium bulk lattice parameter
that are intermediate between the LDA and rPBE ML-FFs ones, as can be seen in
Supplementary Fig. 1. We remark that the generation of such hybrid ML-FF is
possible because of the strictly 2+ 3-body nature of the ML-FFs employed, and
because of the similar functional forms the LDA and rPBE ML-FFs display. Fur-
thermore, the hybrid ML-FF can be easily fitted to match the experimental cohesive
energy of bulk Au solely because this energy is overestimated (underestimated) by
the LDA (rPBE) ML-FF.

Fig. 4 Surface phase change temperatures of Au NPs of different sizes.
Tsurf:
melt (downward triangles) and TNP

melt (upward triangles) as a function of
NPs' reciprocal radius, for MD simulations carried out using the LDA ML-FF
(a), rPBE ML-FF (b), and hybrid ML-FF (c). Experimental estimates of Tsurf:

melt

from high-resolution TEMmeasurements are taken from Foster et al.38, and
are shown as pink circles. Error bars indicate the standard deviation of the
melting temperatures and of the NP sizes for experimental data taken from
Foster et al.38 (pink circles).
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DFT calculation set-up. We employ training data calculated under the LDA or
GGA (GGA-rPBE pseudopotentials) to the exchange-correlation term. We carry
out LDA41 calculations using the VASP42,43 with projector-augmented wave
pseudopotentials44,45. The energy cut-off of the plane-wave basis set was 240 eV,
and the tolerance for self-consistency for the electronic steps was set at 10−6 eV. We
calculate GGA-rPBE46 reference energies and forces using CP2K 6.147. All elements
are described with the DZVP-MOLOPT basis set48 with cores represented by the
dual-space Goedecker–Teter–Hutter pseudopotentials49. The plane-waves cut-off is
set to 500 Ry with a relative cut-off of 50 Ry. The self-consistent cycle converges
when a change of < 10−6 eV is observed in the estimate of the system’s energy.

Molecular dynamics calculation set-up. To study via ML-FFs the melting of Au
NPs, we perform several independent MD simulations at fixed volume in periodic
boundary conditions (box width= 100Å). We employ LAMMPS50 as our MD
engine and the FLARE28 add-on for calculating the energies and forces predicted
by the mapped ML-FF. The temperature of the system, controlled using a Langevin
thermostat with a 100 fs noise, continuously increases at a rate of 20 K/ns, with
starting temperatures that range between 400 and 700 K and ending temperatures
that range between 1200 and 1500 K, depending on the NP’s sizes. Newton’s
equations of motions are integrated via a velocity-Verlet algorithm with a 1 fs time
step for systems with < 1000 atoms, and 2 fs for systems above 1000 atoms in the
case of the LDA and rPBE ML-FFs. All simulations employing the hybrid ML-FF
are carried on using a 5 fs integration time step.

Local atomic environment descriptor. We employ a local atomic density
descriptor to feature each atomic environment in an NP as a function of the relative
positions of the other atoms within a cut-off set to 1.75 times the average NN
distance, and therefore set to 4.24Å for simulations employing the LDA ML-FF, to
4.42Å for simulations employing the rPBE ML-FF and to 4.30Å for simulations
employing the hybrid ML-FF. A sensitivity analysis shows that the featurisation
associated with the representation is marginally affected by the choice of the cut-off
radius, as long as the latter is larger than the bulk second NNs distance (see Sup-
plementary Methods for further detail). We adopt the 2+ 3-body atomic cluster
expansion representation with four radial and four angular components and employ
Bessel functions of the first kind as radial basis functions36,37,51.

Clustering algorithm for phase change characterization. To apply the clustering
algorithm to data generated through the use of an ML-FF, we first gather 10,000
randomly chosen local atomic environment representations from among MD
simulations of all NP sizes. We then run a hierarchical k-means clustering52

algorithm to group similar representations, applying two to three iterations of k-
means clustering to partition the local atomic environment sampled during the
MD simulations into the six classes described previously (additional details can be
found in the Supplementary Methods).

Melting temperature estimation. We estimate the TNP
melt as the temperature for

which the maximum positive derivative of the fraction of inner atoms labelled as
liquid w.r.t. the nominal simulation temperature (or, equivalently, the simulation
time) is observed. The TNP

melt is commonly defined as the temperature where the
highest value of the heat capacity is observed TNP

melt, or as the temperature here the
highest standard deviation in the total energy is found13,53,54. Supplementary Fig. 13
shows the striking correspondence that exists between the TNP

melt estimated using the
three aforementioned methods. This result confirms that the TNP

melt estimation
methods we introduce are accurate for the systems we consider and reinforces our
belief that the characterization offered by our clustering method is valid.

Surface transition temperature calculation. To calculate Tsurf :
thresh, we analyse the

spatial distribution of LS atoms. We subdivide the NP in spherical shells of width
1Å centred at the COM of the NP. We define the crust radius, Rcrust, as the
distance from the NP COM of the spherical shell where the highest fraction of LS
atoms resides. This generally coincides with the outermost radial shell of atoms in
the NP. We then aim to define a surface shell and consider a second distance,
Rsurf.= Rcrust− 3Å. The choice of a 3Å buffer represents an arbitrary but educated
guess to incorporate, approximately, a second shell of atoms in our statistics.
Finally, we define Tsurf :

thresh as the lowest temperature at which the liquid local atomic
environments in the surface of the NP amount for the 0.4 of the total number of
local atomic environments in the surface shell. To exemplify the protocol, Fig. 5
displays the values of Rsurf. and Rcrust for a snapshot extracted from an MD tra-
jectory sampled using the rPBE ML-FF.

Mean first-passage temperature. To evaluate the MFPT, we monitor the label
assigned to each atom in the system by the hierarchical clustering scheme at each
time step. The MFPT is then defined as the lowest temperature at which at least 0.4
atoms of given initial coordination are labelled as liquid environments. Since
MFPTs depend on the TNP

melt , for all MD trajectories we normalize each MFPT by
the average TNP

melt for that particular NP size and ML-FF employed.

Statistical information. Simulation results are obtained as averages over four
independent simulations for NPs containing <1000 atoms, and over two independent
simulations for NPs containing more than 1000 atoms. The TNP

melt reported for each
NP size and ML-FF are the average TNP

melt computed across the four (or two) inde-
pendent MD simulations. The error bars for TNP

melt reported for the y-axis of Fig. 2 and
Supplementary Figs. 6 and 13, are calculated as the maximum between 25 K—the
temperature window (see also ‘Methods’) used to individuate the peak of the positive
derivative of the fraction of liquid atoms w.r.t. simulation temperature—and the
standard deviation of TNP

melt computed for the four (or two) independent MD simu-
lations for each NP size and ML-FF used to simulate them. The MAEs on energy
differences (force components) reported in Supplementary Table 1 are computed on a
variable number of observations, determined by the NP size, from nine (15,147) for
Au 561 Co to 50 (22,050) for Au 147 Co. On average, MAEs on energy differences
(force components) are calculated on 33 ± 14 (21,417 ± 12,531) samples.

Data availability
The tabulated Au ML-FFs, Au NPs MD trajectories and ab initio training data for Au
NPs generated in this study have been deposited in the Materials Cloud database under
accession code https://archive.materialscloud.org/record/2021.13155. Example MD
trajectories are also stored in the same repository. Source data for Figs. 2 and 4 are
provided with this paper. Other data are available from the authors upon request.

Code availability
A majority of the code used in this calculation is open source. ML-FF training and
mapping are carried on using FLARE (https://github.com/mir-group/flare). DFT data are
gathered using CP2K (https://www.cp2k.org) and VASP (https://www.vasp.at-
licencenumber5-867). MD simulations are run via LAMMPS (https://
lammps.sandia.gov). The computation of local atomic environment descriptors and the
clustering characterization are carried out using the Raffy Python package56. K-means
clustering is done in Python via the SciPy library.
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